ATTENTION: This page has been migrated to the Tazama GitHub repository and is now located at: https://github.com/frmscoe/docs/blob/main/Product/configuration-management.md This page will no longer be maintained in Confluence. |
---|
Table of Content Zone | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
TL;DR
Platform configuration is managed through a number of configuration files, each containing a JSON document that configures a specific processor type (CRSP, rules and typologies) and specific processor instance identified by a processor identifier (id@version) and a configuration version.
...
The messages
object is an array that contains information about the transactions that the platform is expected to evaluate. Each element in the messages
object contains the following attributes11:
id
is the unique identifier for the Transaction Aggregation and Decisioning Processor (TADProc) that will be used to ultimately conclude the evaluation of a specific transaction. It is possible for a transaction to be routed to a unique TADProc that contains specialized functionality related to summarizing the transaction’s results10.cfg
is the unique version of the deployed TADProc that will be used to conclude the evaluation of the transaction.txTp
defines the transaction type for which the message element is intended. ThetxTp
value here must match a correspondingTxTp
attribute in the root of the incoming message. If no matchingtxTp
attribute is found in the network map, the transaction will not be routed for evaluation and will simply be ignored by the CRSP.channels
defines the next layer of evaluation destinations along the route laid out by the network map for the evaluation.
...
In its current configuration, the platform only evaluates the pacs.002 as the trigger payload for the rule processors and typologies have only been defined with the final status of a payment transaction in mind.
The typology processor is not currently configured to interdict the transaction when the threshold is breached; only investigations are commissioned once the evaluation of all the typologies are complete.
An explicit version reference has been planned for development to make it easier for an operator to link an evaluation result to the specific originating network map.
We have found during our performance testing that the text-based descriptions in our processor results undermines the performance gains we achieved with our ProtoBuff implementation. We will be removing the unabridged reason and processor descriptions from the configuration documents in favor of shorter look-up codes that will then also be used to introduce regionalized/language-specific descriptions.
In its default deployment, the platform contains a single version of the “core” platform processors (the typology processor and TADProc) at a time. Though it is possible to deploy and maintain multiple parallel versions of these processors and manage routing to these processors through the network map, this guide will only focus on singular core processors for now.
Before our implementation of NATS, Tazama processors were implemented as RESTful micro-services. The
host
attributes in the network map contained the URL where the processors could be addressed. With our initial implementation of NATS, the routing information was moved into environment variables that were read into the processors when they were deployed, or restarted in the event of a processor failure. We have now removed the need to specify the host property for a processor - the routing is automatically determined from the network map at processor startup - see https://github.com/frmscoe/General-Issues/issues/310 for details.